Pay Today for a Rainy Day: Improved Approximation Algorithms for Demand-Robust Min-Cut and Shortest Path Problems
نویسندگان
چکیده
Demand-robust versions of common optimization problems were recently introduced by Dhamdhere et al. [4] motivated by the worst-case considerations of two-stage stochastic optimization models. We study the demand robust min-cut and shortest path problems, and exploit the nature of the robust objective to give improved approximation factors. Specifically, we give a (1 + √ 2) approximation for robust min-cut and a 7.1 approximation for robust shortest path. Previously, the best approximation factors were O(log n) for robust min-cut and 16 for robust shortest paths, both due to Dhamdhere et al. [4]. Our main technique can be summarized as follows: We investigate each of the second stage scenarios individually, checking if it can be independently serviced in the second stage within an acceptable cost (namely, a guess of the optimal second stage costs). For the costly scenarios that cannot be serviced in this way (“rainy days”), we show that they can be fully taken care of in a near-optimal first stage solution (i.e., by ”paying today”). We also consider “hitting-set” extensions of the robust min-cut and shortest path problems and show that our techniques can be combined with algorithms for Steiner multicut and group Steiner tree problems to give similar approximation guarantees for the hitting-set versions of robust min-cut and shortest path problems respectively.
منابع مشابه
Improved approximations for robust mincut and shortest path
In two-stage robust optimization the solution to a problem is built in two stages: In the first stage a partial, not necessarily feasible, solution is exhibited. Then the adversary chooses the “worst” scenario from a predefined set of scenarios. In the second stage, the first-stage solution is extended to become feasible for the chosen scenario. The costs at the second stage are larger than at ...
متن کاملImproved approximations for two-stage min-cut and shortest path problems under uncertainty
In this paper, we study the robust and stochastic versions of the two-stage mincut and shortest path problems introduced in Dhamdhere et al. [6], and give approximation algorithms with improved approximation factors. Specifically, we give a 2-approximation for the robust min-cut problem and a 4-approximation for the stochastic version. For the two-stage shortest path problem, we give a 3.39-app...
متن کاملApproximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کاملMin-max and min-max regret versions of combinatorial optimization problems: A survey
Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, min cut, min s-t cut, knapsack. Since most of these problems are NP -hard, we...
متن کاملMin-max and min-max regret versions of some combinatorial optimization problems: a survey
Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, cut, s-t cut, knapsack. Since most of these problems are NP-hard, we also inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006